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Abstract

Working memory enhancement and filtering of
distractions modelled as a top-down signal from the

dorsolateral prefrontal cortex
Pdr Johansson

Working memory capacity (WMC), the amount of information a person can keep in
fast and easily accessible storage, has been linked to a range of cognitive skills and
diagnoses, including general intelligence and ADHD. Several studies have found an
inverse relationship between WMC and distractibility, and it has been shown that the
dorsolateral prefrontal cortex (dIPFC) is activated both when distractions need to be
filtered away as well as when many items are held in working memory (WM). Here,
we propose a dynamic mechanism by which activity in dIPFC can explain both filtering
of distractions and WMC enhancement and explore this mechanism with
computational modelling. In the model, a general activation of the dIPFC increases
capacity of the memory store in the intraparietal sulcus (IPS) by raising its level of
activity. Filtering can be achieved if a subpopulation of the dIPFC activates neurones in
the IPS selective for a certain attribute. Stimuli with this attribute will be encoded,
while stimuli with differing attributes will be filtered away due to increased inhibition.
The dIPFC can hence provide a link between WMC and distractibility, as the amount
of activity in dIPFC affects both WMC and distractibility. Three different hypotheses
for how the dIPFC can be connected to IPS and a visual area (V4) have been tested,
and fMRI activity was simulated for the hypotheses so that they can be differentiated
experimentally. Knowledge about the rule encoding property of dIPFC can provide a
framework for understanding intelligence and ADHD.
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Popularvetenskaplig sammanfattning

Hjarnans arbetsminne haller information i ett snabhtlattillgangligt forvar och kan
ses som en lank mellan intryck frdn omgivningen och ldsgtinne. Aven nar minnen
fran langtidsminnet framkallas for beslut eller tankeojmnat lagras de temporart i
arbetsminnet. Arbetsminnet kan bara halla informatiokognstund och bara ett antal
saker i taget. Hur manga saker en person kan komma ihaigigamt
arbetsminneskapacitet, varierar mellan ungefar 4-7. smoahet har en betydelsefull
roll, det har visat sig att hog arbetsminneskapacitet hd&ageman med hog intelligens,
och lag arbetsminneskapacitet har kopplats till exempe®id Typiskt for personer
med ADHD &r att de har svart att filtrera bort distiaher, alltsa irrelevant information
som egentligen kan bortses ifran. Experiment har viséirandgan att filtrera hanger
val samman med just arbetsminneskapaciteten.

Det ar inte helt sjalvklart vad i hjarnan det ar somagbhog arbetsminneskapacitet
skulle gora det lattare att valja ut relevant informmatidur manga minnen som kan
lagras brukar namligen anses bero pa hur mycket aktivitethar i ett omrade i den sa
kallade parietalloben. Filtrering av distraktioner handitillet om att blockera intryck
innan de lagras dar, fragan ar pa vilket satt det paverkagpauiteten. Teorin ar att det
finns ett annat omrade i hjarnan som kan paverka bada dessmbr. Detta skulle
kunna vara ett omrade i pannloben som kallas dIPFC, detletrirar visat sig vara
aktivt bade nar intryck blockeras och nar man maste lagdigt manga arbetsminnen.
Man kan se dIPFC som en extra resurs som portionedis det behovs beroende pa
vilken typ av uppgift man utfor. Det ar dock oklart hur déitagerar, och malet med
det har exjobbet har varit att bygga en datorbaserad nuitathan kan simulera
handelseforloppet fér att se om teorin kan stamma.

Designen av modellen har gjorts for att efterlikttzegperiment dar férsékspersoner
fick se roda och gula prickar pa en skarm och ombads omvaxaétnkiemma ihag alla,
och att bara komma ihag de roda. Modellen simuleraviagttpa cellniva i natverk
kopplade for att efterlikna tre hjarnregioner som antasgakt for att forklara vad som
hander i experimentet, dIPFC, ett minnesomrade och attlitismrade.

Utan paverkan fran dIPFC kan modellen lagra tva minnésaava prickar oberoende
av farg. Om hela dIPFC omradet aktiveras skickas &étitiil hela minnesomradet.
Denna extra aktivitet forhdjer minneskapaciteten och géreaminnen kan lagras. For
att efterlikna de fall da férsokspersoner ombeds komnearibda prickar men ignorera
gula, aktiveras bara den del av dIPFC som ansvarabttdAktiviteten i dIPFC forhojer
verksamheten i motsvarande del av minnesomradet och korskuntektiviteten i den
gula delen. Nar da bade réda och gula prickar presenteraseeaniida prickar att
lagras, men aktiviteten i det gula omradet ar for lagtfkumna lagra dessa.

Resultaten visar att dIPFC pa det har sattet kan vakadgt bade for forhojd
arbetsminneskapacitet och filtrering av distraherandeutien lagfungerande dIPFC
innebar lag arbetsminneskapacitet och oformaga att filtlisteaktioner, typiska
symptom for ADHD. En bra fungerande dIPFC inneb&adietsminneskapaciteten kan
hojas och distraktioner filtreras. En véalutvecklad faga att uttrycka regler pa det har
sattet kan ocksa vara en viktig lank till att férsta hetsminneskapacitet och aktivitet
i dIPFC ar kopplat till intelligens.
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1 Introduction

Working memory (WM) refers to the ability to keep infotma in a fast and easily
accessible storage for manipulation (Baddeley & Hitch 190ddr@an-Rakic 1995).
While storage in long-term memory occurs through longrgshanges in synaptic
connections between neurones, information in WM is kemebgistent neuronal
activity (Goldman-Rakic 1995). A defining feature of WMhsit only a limited amount
of information can be held and only for short intervalsese limitations may constitute
one of the primary bottlenecks of human cognition (Maglvanoff 2005), which

could be one of the reasons for the observed link betW&dmperformance and a range
of cognitive skills, including general intelligence (Kafa&ngle 2002, Conway et al.
2003).

The most common way to measure WM is to determin&iecapacity (WMC), the
maximum number of items a person can hold in WM, whsalsually around 4-7 items
(Miller 1956, Luck & Vogel 1997, Cowan 2000) depending on the clheniatits of the
task. By measuring WMC, Westerberg et al. (2004) found unnaiskalkconnections
between ADHD and poor WM. The neurophysiological mechanisemind these
findings have not yet been explained in a satisfact@y. Wowever, several studies
have found an inverse relationship between distractipility degree to which
information in WM is affected by the presentationroélevant information, and WMC
(ref), findings that fit well with the fact that chilein with ADHD are typically easily
distracted.

A neurophysiological mechanism behind the relationship betwW&dC and
distractibility would be of interest as it could helpuinderstanding the role of WMC in
ADHD. The covariation between WMC and the ability ésist distractions indicates
that they could both depend on activity in a same cep&inof the brain. However, at
first glance, WMC and the ability to resist distran8alo not seem to have much in
common. Storage capacity is mainly determined by aciivitige parietal lobe, in
particular the intraparietal cortex, IPS (Todd & Mara@94). Filtering distractions on
the other hand, is usually thought of as blocking of sensputs during the
propagation through the sensory areas towards the memeay. It is difficult to see
how the size of the storage buffer in IPS could haveffact on this block.

Another possible explanation is that the brain negnderlying WMC and
distractibility share the same modulating system.réng candidate brain region is the
dorsolateral prefrontal cortex (dIPFC), a region tbai&flong time has been thought to
play a crucial role in working memory (Goldman-Raki®g87, Curtis & D’Espositos
2003, Conway et al. 2003). The role of the dIPFC seems &d figh level management
and strong activity in this region has in several stitleen related to high WMC,
resistance against distractions and intelligence (Duh©88, Kane & Engle 2002, Gray
et al. 2003). It has been shown that the dIPFC is aetivat maintain memories when
the number of items held in WM, approaches the WMC 1ige2002, Bunge &
Klingberg 2000). Furthermore, Klingberg et al. (2005) showettthming of WM,
which has been seen to increase brain activity in fREQI(Olesen et al. 2004),
improved WMC as well as the ability to block out disti@t (as measured with the
Stroop task) in people with ADHD.



Recent theories of dIPFC function propose that dIB€&wity supports WM storage
specific areas in the parietal lobe by directing top-dat@ntion in the form of neural
control signals (Curtis & D’Esposito, 2003). Even if thpjgort for the executive nature
of dIPFC is strong, the way in which it is able to matieildifferent operations like
WMC and distractibility is not clear. Rules for whext¢éention should be directed could
be maintained by active maps of goal relevant attrigiMéker & Cohen 2001). High
WMC can be thought of as a result of active atterdiash hence subject to the same
activity as the attention control that regulates tiséraictibility. Kane and Engle (2003)
touched upon the subject when they observed that the parfoenof high WMC
subjects in a WM task was reduced to the same level asftloat WMC subjects when
another attention demanding task was performed at the tsae The authors argued
that this result indicates that high WMC subjects ndignggin their extra capacity by
recruiting attentional recourses, but that when attemteeds to be redirected to the
other task, it cannot be used to boost capacity, sosmwty what is the storage
capacity of IPS is measured. Looking from the other Wagel et al. (2005) saw that
WMC predicts the efficiency of attentional contrdhdividual differences in memory
capacity may not simply reflect variability in availalgtorage space, but may also be
strongly constrained by the efficiency with which &hwailable space is allocated.”
Since Vogel et al. recorded event-related potentiadsregbolution of the data is not
good enough to make detailed claims about the involved dmaaan explanation in
line with the theory presented above would be thalotlvecapacity subjects have a
poorly functioning dIPFC, explaining both the low WMC ahd tnability to filter
distractions. This way of linking WMC and filtering resis extensive reviews (Kane &
Engle 2002, Curtis & D’Esposito 2003, Conway et al. 2003), mgead to be said that
not all researcher in the area would agree. Finding tiohamnésm that link WMC and
distractibility is relevant and highly interesting asvaguld further the understanding of
intelligence and WMC, and could be a significant piecexplanation in the
comprehension of ADHD like symptoms.

In this thesis, | investigate two main questions. Firptekent a hypothetical
mechanism whereby the dIPFC can dynamically changetitgty mode to modulate
activity in posterior areas in a task-relevant way. Givexn mechanism within the
dIPFC, it is unclear to which posterior region it cactedo in order to modulate

activity. | therefore put forth three experimentatdgtiable hypotheses for the identity of
the target area of the dIPFC. All three hypothesesl ent@twork consisting of the
dIPFC, a visual area, V4, and the IPS, in which stiamgliencoded in V4 and passed on
to the IPS, where they are stored.

— H1: IPS-filtering. dIPFC connections here target the IRf¢ dIPFC boosts
capacity through general excitation of the memory aed filters by sending an
excitatory signal that renders the IPS unfit to stbséractors

— H2: V4-bias. dIPFC connections slightly excite the niepopulations in V4 that
encode the relevant information. This excitatory biageseas an advantage in the
competition for access to the limited memory stor’B. Boosting occurs
through general excitation of the visual area which in éxaites the IPS.

— H3: V4-filtering. dIPFC connects to the visual area. Filigg occurs in V4 due to
inhibition of the neural populations encoding distragtdfemory boosting is the
same as in Visual-bias.



To test the hypotheses (which are visualized in figure d2)patational modelling will
be combined with functional magnetic resonance imagM@&[¥. During the last
decade, computational models of WM, incorporating resudta £xtensive in-vitro
experiments and electrophysiological single cell studiiesionkeys, have been able to
explain a number of experimentally observed featur&gMf(Compte, 2006). Models
like these have been used to study WMC (Macoveanu 20@6, Edin et al. 2007) as
well as distractibility (Compte et al. 2000, MacoveanaleR007). This thesis makes a
novel approach in modelling both WMC and filtering as xecative top-down effect
originating from a dIPFC that can be set in two diffén@odes. Simulated data will
later be combined with brain activity measured with fMi&RInvestigate which
hypotheses could account for the observed data. OnlydHellimg part will be dealt
with in the thesis work. However, | will also deseritihose parts of the experimental
setup that are needed to understand the modelling.

1.1 Neurones and the cortex

The cerebral cortex, or the grey matter of the bi@nsists of interconnected neurones
that transmit neural impulses called action potent@atach other. Neurones are
essentially leaky electrical capacitors with a potditkiat depends on the currents
injected into them. When the potential reaches altbiésa neural impulse is emitted
and the potential is reset to a reset potential.

There are two main types of neurones, pyramidal cedlsrzhibitory interneurones.
Pyramidal cells connect to other cells with synapsetagung two types of receptors,
the NMDA receptor (NMDAR) and the AMPA receptor (AMPRARSignalling via the
AMPAR leads to currents in the recipient cell with acim faster decay time than the
NMDAR, and the effect of a train of action potential@r synapses dominated by
AMPAR is hence much briefer in time than when the NMDIs involved. Both
receptors are excitatory, meaning that they bring the patemthe recipient cell closer
to its threshold. Since pyramidal cells signal via extoity receptors, they are also
called excitatory. Connections from inhibitory interrengs are, on the other hand,
mediated by the GABAreceptors (GABAR), which is inhibitory (it brings the
potential of the recipient cell further from the thelsl). The kinetics of the GABR
are fast, almost as fast as those of the AMPAR.

The activity of a neurone or a neural network is depermi@ntumerous properties of
the involved cells and in the network case it also dependhe way cells are
connected. The dynamics that these properties craatleecstudied with the frequency-
current curve (fl-curve) (figure 1), where the activitygasured in spikes/s is dependent
on the current injected into the neurones in the network
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Figure 1 - A fl-curve. The single-cell or network activity is dependent ocuhent
injected into the neurones.

1.2 Visuospatial WM

Visuospatial WM is the WM of the location of objeatsvisual space, and is the type of
WM studied here. Not only does it correlate strong wititHED(Westerberg et al.
2004), but it is also one of the simplest and best exptypes of WM. Neurones that
respond to nearby stimuli are more strongly connectedlasdresituated on the cortex
than neurones that respond to locations further awdeinisual field. This property
creates what is called a retinotopic map. Retinotojaps have been found in both
visual areas and parietal as well as frontal memagsar

Visual cues that are transmitted from the retindaéoltrain are first processed by the
different regions of the visual cortex. The representatiadhe earliest regions is a two-
dimensional image of the visual field, almost like a pbased screen. Inputs are then
decoded by increasingly specified areas as they are passedtber areas along
sequence of visual areas called the visual stream. Diffetgects and their spatial
location are separated from the surrounding and processedibys specialised for
their features. As visual information proceeds along thealistream, the effect of
attention related top-down signals, which enhancedpeesentation of the attended
information, becomes more pronounced (Kastner & Uegiat 2001). After
processing in the visual cortex, inputs are passed on takW&s in the parietal and
temporal lobe where they can be held and used for monpler operations and/or
passed to long term memory. It is typically thought thetospatial information is
passed to the IPS in the parietal lobe (the dorsal pajlamalyobject information to the
temporal lobe (the ventral pathway).

1.3 Persistent activity and the bump model

Activity in the visual cortex is a direct response to &lstues, and vanishes as soon as
the cues are removed. In contrast, networks in therdgins have been shown to
display stimulus-specific persistent activity, whiclthe prevailing theory behind WM
(Goldman-Rakic 1987). Persistent activity is the abdity group of neurones that are
sensitive to the same stimulus to maintain a highdifiequency. When a group of
neurones fire, the activity is fed back to the samegsm that they again activate each
other in a process called recurrent excitation. Sineaeurones are feeding each other
with excitatory currents, the activity remains eveerathe stimulus that first started the
activity is removed, hence a memory is held. Persistetitity related to WM has been
found among neurones in the parietal, temporal and pratfrioie.



In order to hold a memory, persistent activity needsetooncentrated in this way to
only those cells encoding the stimulus, otherwise itildide impossible to identify the
stimulus that gave rise to memory activity by observingattivity patterns in the
network. A memory held in this way is often referrecas a “memory bump”, because
the firing pattern of the involved neurones looks like emfpicompared to the low
frequency firing of the surrounding neurones, see figuerétwork that can show
persistent activity has non-linear properties that casebermined by the shape of the
fl-curve. Two important aspects of a network that contalio the properties of the fl-
curve, and hence the behaviour of the memory bump, amtinection curve and the
interplay between excitatory and inhibitory neurones. ddmnection curve describes
how strongly neurones connect to other neurones dependthe difference in their
preferred stimuli. A wide and flat connection curve, g that neurones do not
discriminate strongly between the difference in inpgihal, is likely to induce a
relatively wide bump, whereas a networks where neuromeisects much stronger to
close neighbours than distant, is likely to result merow bump. However, it is also
important that the network has strong enough inhibit@that neurones on the side of
the bump are suppressed. Without this component, bumesworks with even the
very narrow curve will grow wider and wider until thal the whole network and the
memory is lost.

2 Methods

Since the modelling study presented in this thesis is thdadie combined with a
fMRI experiment conducted by other members in the develataheognitive
neuroscience group at Karolinska Institutet, the modebéan built in accordance to
that experiment.

2.1 fMRI experiment

Measurements of brain activity with functional magnegisonance imaging (fMRI) and
measurements of WMC were performed in 32 subjects whaleghrformed a WM task
inside a magnetic resonance scanner. There were tsioneof the task. In the
distraction task, subjects were instructed to remembegydasi&ion of red dots and
ignore yellow dots. In the no distraction task, subjeetsded to remember the location
of all dots. The task had five phases (figure 2). During amlifikation phase, subjects
were required to look at the cross. Following this waessk instruction phase where a
symbol told the subject which of the tasks to preparefdriangle was the symbol for
the distraction task and a square the symbol for theistiaction task. The instruction
phase was followed by the memory stimuli phase, whexgal/cues in the form of dots
were presented in a circle. Three red and two yellowwlets displayed in the
distraction task, whereas three red dots or thredotdand two yellow dots were
presented with equal probability in the no distraction.tBsking the subsequent delay
phase, subjects held the location of the dots in merhastly, during the response
phase, a probe in the form of a question mark was pegsahf location, and the
subject had to respond whether or not there had beenpresented there. The length
of some of the phases was varied between trialgdtistical post processing reasons.
The cues were presented at an eccentricity of approxin@téom the fixation point
when subjects lied in the fMRI scanner.
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Figure 2 - The experiment consisted of a distraction and a no distraction tasky whic
were distinguished between by a symbol during task instruction. In trecten task,
only red cues were to be memory cues, whereas all cuesoNsgaeémembered in the
no distraction task. After a delay, a probe marked a location in thle@rd subjects
had to respond whether a memory cue had been presented there or not.

2.2 The model

2.2.1Overall structure

Three brain regions are of particular importanceHerexecution of the WM task, a
visual region, V4, the memory region in the IPS amddi?FC. Visual stimuli enter V4
and are passed on via excitatory connections to thenli®Se they are stored. The
dIPFC allocates attentional resources by sendingat&cit signals to the other two
regions in order to control the access to and capatityM. The way the dIPFC
connects to the other two regions is different fohdagothesis and is described
below. The visual cortex, being a target for top-downag(Desimone 1998), could
be a region with which the dIPFC connects to exetoigedown control, and the idea
was to include the last visual area that cues are thonglaiss before entering the IPS,
since it has been found that top-down modulations ast ptonounced there (Kastner
& Ungerleider 2001). V4 was assumed to be the main visualiavelved in this task,
since it encodes both colour and locations and medipa¢gisinformation to parietal
areas (Gatass et al. 2005). It should be noted thaisuglly thought that spatial
information is passed to the parietal areas via dorsaalareas like V6, but no colour
selectivity has been reported for this area and it bas Hescribed to handle location of
high eccentricities (~3@nd above, whereas the cues in the experiment aenpedsat
6°) (Gatass et al. 2005). Other regions are also adiyateh as early visual regions),
but they are not central to the execution of the sakneed not be included in the
model. Likewise, although the modelled regions are heat#gyconnected to other
regions in the brain, only those connections thabapresumed importance for the
execution of the task are included in the model.



Figure 3 - Approximate locations for the regions of interest.

2.2.2Basic structure of each local network

Each brain region in the model is built up of two lomaidtical networks coding for the
red and yellow dots, respectively. Although the basic awctihite of each network is
identical, networks in the IPS and the dIPFC are paréed to have stable persistent
activity, whereas V4 lacks this ability. Each locametk consists of one population of
excitatory pyramidal neurones and one population of irdrpinterneurones. Both cell
types are modelled as leaky integrate-and-fire neureanesAxdid et al. (2007) and
Compte et al. (2000). Cellular membrane potentials aregideddyy the equation

av
Cma =1 AMPAR+I nvpar T IGABAAR +0. (V - EL)’ \% <Vth (1)
V :Vresetf V thh
Vin
=5
0 2.0 40

Time (ms)
Figure 4 - The potential of an integrate-and-fire neurone (1) driven by constant input
current 10 = 1.5. The voltage u(t) increases up to the threshold pot&fthalvhere it is
said the neurone spikes. The potential is then set to the valueret#tgotential
Vreset.

There is also a refractory periagh, which sets the time the potential is held at thetrese
potential after an action potential. Here follows aoeept from Ardid et al. (2007)
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describing the inner design of a network. For a more detadeaunt of the network
properties, see Compte et al. 2000.

[E]ach type of cell is characterized by six intrmyparameters: the total capacitafzg the
total leak conductanag, the leak reversal potentil, the threshold potenti&k,, the reset
potentialV,es, and the refractory timg . The values used a€, = 0.5 nF,g. =25 nSE,_ =
=70 mV, Vi, = -50 mV, Vs = —60 mV, and;s = 2 ms for pyramidal cells; ar@,, = 0.2
nF,g. =20 16 nSE,. =-70 mV,Vy, = =50 mV, Vies = =60 mV, andes = 1 ms for
interneurons. All cells receive random background excitabpnyts. This overall external
input is modelled as uncorrelated Poisson spike traincctoreauron at a rate dt,,= 1800
Hz per cell (or equivalently, 1000 presynaptic Poisson spakestiat 1.8 Hz). The external
input is exclusively mediated by AMPARs...

Neurones receive their recurrent excitatory inputs thré\MRAR and NMDAR mediated
transmission and their inhibitory inputs through GAES. These conductance-based
synaptic responses are calibrated by the experimentallyuregladynamics of synaptic
currents. Thus, postsynaptic currents are modelled accaodigg= gs,S(V —Vsyn) [Where
synis AMPAR, GABALR or NMDAR ], wheregsy,is a synaptic conductancea synaptic
gating variable, antlsy, the synaptic reversal potentiddf, = O for excitatory synapse¥s,n,
=-70 mV for inhibitory synapses). AMPAR and GABRR synaptic gating variables are
modelled as an instantaneous jump of magnitude 1 when a spiks atthe presynaptic
neuron followed by an exponential decay with time constarg ®HHmAMPA and 10 ms for
GABAA. The NMDA conductance is voltage dependent, ggghmultiplied by ¥(1 +
[Mg®*] exp(0.062V,)/3.57), Mg*'] = 1.0 mM. The channel kinetics [for NMDA] is
modelled by the following equations:

o, {r_lsj“ axi-9 () - —(Tijwzi St-1) @

where s is the gating variable, x is a synaptic varialdpgstional to the neurotransmitter
concentration in the synapseare the presynaptic spike times=100 ms is the decay time
of NMDA currents,r, =2 ms controls the rise time of NMDAR channels, ag®.5 kHz
controls the saturation properties of NMDAR channelsgtt presynaptic firing

frequencies. Parameters for synaptic transmissiotakea from Compte et al. (2000).
(Ardid et al., 2007).

S x 10 Magnification of x around t==0.05
0.7 1 "
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0.2 1 0.3
0.2
0.1
0.1
0 - : - 0 .
0 01 0.2 03 0.4 05 0.04 0.045 0.05 0.055 0.06
Time (s) Time (s)

Figure 5 - The gating variable s (2), the ratio of open ion channels, for NMDA in
response to a presynaptic spike. i.e. a neighbouring neurone spikead3,#nost
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channels are opened instantly, but the proportion open decays with time. s depends
the synaptic variable x plotted in the right graph.

For each circuit, pyramidal celldl§ = 4096) and interneuronbl(=1024) are spatially
distributed in a ring according to preferred cues(0pr< 360°). Connections
between neurones can be structured or unstructured. Newomaect stronger to
neurones with similar cue preference than neuronesdigifarate if the connection are
structured, and they connect equally strong to all neurohes wonnections are
unstructured. The architecture is unchanged from that i A&tdal. (2007), although
synaptic strengths differ. The strength of recurrenheotions between neuronse in the
network depends on the difference in preferred cues.iS mgplemented by taking the
synaptic conductance between neuroaled neurongto begsynj= W6 — 6,)Gsyn,
whereW(d; - 6) is either a constant for unstructured connectio®;(— ¢;) = 1), or

the sum of a constant term plus a Gaussian funatiostfuctured connections

W(ei—9,-)=J‘+(J+_J—)e—<a—e,.>2/zgz %

G J
xy

G
xy
J L =
i D"‘T
-180 0 180
Angular Difference (deg)

Figure 6 - Structured connection (4). Connection strength betwtwo neurones
depends on their difference in preferred cue laatPicture from Edin et al. (2007).

Connection Strength

2.2.3Specific tuning of the local networks in each region

Appendix A holds the values for the synaptic cotinég within the networks. The IPS
and the dIPFC modules have strong recurrent egcgtabnnections to sustain
persistent activity. The networks in V4 and IPSéhatructured connectivity in all but
inhibitory-to-inhibitory connections. Finding apgntate values for all parameters was,
because of the vast parameters space of the naotilele consuming work subject to a
number of requirements. The main issue was toeEaiPS module with at least a
capacity of holding three memory bumps. With a-aad-error based methodology and
with guidance from Macoveanu et al. (2006), thetivmf the mean strength of local
excitatory-to-excitatory connection&g_,g) was increased and the connection curve
was made narrower and more peaked by decreasing increasing’. Structure
connection was also introduced for the excitatorahibitory (Ge-,1) and the
inhibitory-to-excitatory connection$(_g) to maintain a fixed width of the bumps
regardless of the number. The network was requoddve a resting state activity
around 1 Hz and a mean activity in memory bumptepably below 50 Hz to fit
experimental data (Ardid et al. 2007). A functionamory further requires that bumps
are relatively stable in position. As will be explead more thoroughly later on, a model
network tuned to the limit of capacity will be ieasingly likely to burst out into
spontaneous bumps. This is considered as a highigsirable behaviour with no
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support in experimental data from monkeys or humans. Theyabimaintain a stable
resting state was therefore also an important requirewigen capacity evaluations of
the modelled network were made.

The V4 module was modified to achieve sensory bumps of zippaitely the same
width as in the IPS. Reasonable firing rates for tresdoeing a late visual region, was
set to 10 Hz at rest and somewhat below 100 Hz in thebfirsps (Desimone &
Schein1987). A distinction from earlier visual areas igétatively strong recurrent
inhibition (via E—l and I-E connections) that reduces the firing frequencies in the
bumps when the number of bumps grows.

The modelled dIPFC area was tuned to encode one of te®) napacity increase or
filtering. In neither case is it required to retaintsgdanformation, and hence the dIPFC
was modelled with only unstructured connections, i.enalrones target all other
neurones in the network equally strongly. This wayhestwork only has an on and an
off state. Firing rates here were a few Hz at redtaanund 20 Hz during persistent
activity, similar to those in experiments (Funahaslail.e1989).
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Figure 7 - Structure and example simulation of a model network. A) Connections
within a network. All cells connect to all other cells. Coniogst can be structured or
flat, where a structured connection implies that a cell connects stianegly to cells
with similar cue preference than to other cells. B) Schematidavalyow the
connections within a network. C) Example of a memory bump. Duringgh®d0 ms
the network is in a resting state and fires spontaneously at lowM#ten a cue is
presented (modelled as a current) to for neurones with preferred cueangied 180,
these neurones starts to fire to each other at much higher ratesscteating a memory
bump. Neurones outside the side of the bump are suppressed by increasgdnnhibi

2.2.4Connections of local networks into model regions

Memory dots and distracters are distinguished only by tdadour, red or yellow. The
representation of colours is spatially separated int@l kuxdbnetworks distributed across
the cortex in area V4 (Bartels & Zeki 2000). Thereforé,was modelled as two
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spatially separated and only weakly connected local netwooksection strengths
between colour networks are approximately 5% of thod@ma colour network,

except in the V4-filtering hypotheses where they wenger). Only two colours were
modelled, since only two colours appeared in the fMRI expgarinThe connections
between the colour networks were modelled the sameaw#ye internal connections of
a network and are structured for all but the inhibitorintabitory connections.

Figure 8 - One area with two colour-networks.

Colour selectivity has also been found in the parietdégpespecially if the colour of
cues are goal relevant (Toth & Assad 20@2gn though this property is far less
documented than for the visual cortex. There is no redsawever, to believe that it
would be easier to store more locations if the dotebdéferent colours than if they
have the same colour. This implies that inhibition lestwthe colour-networks must be
as strong as within each network. After one stimulasslieen encoded in one of the
networks, it is then just as difficult to store am®t stimulus in either of the networks.

The dIPFC networks do not need to be thought of as etypkalour coding, but rather
as rule encoding. Being a region that encodes rules dgalynconnectivity in this
region is presumed to be easily changeable (Miller &&ba2001). The two dIPFC
networks in the model are unconnected to each othertéieeare no sources good
enough to even know whether such a connection shouldbelled as excitatory or
inhibitory.

2.2.5Connections between regions

Model brain regions are interconnected through bottormdpa@p-down excitatory
AMPA-mediated connections. Inter-regional connections wevdelled just like the
internal connections of a network. Connections fromd/the IPS are structured, since
they transmit spatial information. Connections goingapposite way, from the parietal
to the visual area were omitted since they where not thaogitay a significant role in
the process of interest. The same was true for caonedtom these areas to the
dIPFC. The connections from the dIPFC networks to étearks in the visual and
parietal areas were unstructured since the dIPFC in ¢lielrdoes not hold any spatial
information.

2.3 Implementing the hypotheses

The main purpose of the present study was to propose amwohahereby the dIPFC
can dynamically switch the memory network into a cégaenhancing or a filtering
mode. To achieve this, networks in the dIPFC were corhéateetworks in the
posterior regions representing the same colour. TheCWPAS tuned to be able to
activate one or two of its networks for filtering or caippaenhancement, respectively.
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By activating a single dIPFC network representing onewopthat network would send
excitatory signals that would enhance activity of neusangosterior areas coding for
dots having that colour. On the other hand, by activating tegfions, both networks
receive excitation and neither colour has an advardegethe other. Instead, the
general excitation enhances capacity by increasing ekiepus.

IPS-filtering V4-bias V4-filtering

Figure 9 - The three hypotheses. Bold arrows indicate where the top-down signal
targets and where the filtering is thought to take place. The Gaussia@ascoext to the
arrows indicate structured connections, and lines indicate flat connect®8s
filtering: Top-down signals from the dIPFC target IPS, where fittgiis also carried
out. V4-filtering: dIPFC targets V4, filtering is still carriezlit in IPS. V4-filtering:
dIPFC targets V4, that also performs the filtering due to stronger itumpconnections
than the V4 areas in the former hypotheses.

Three hypotheses regarding the targets for the dIPF@tpdtas been put up (figure
12). In the IPS-filtering hypothesis, filtering and capaeifrancement take place in the
IPS. In the visual-bias hypotheses, the biasing signal dBC targets V4, but the
connections between the colour-networks here aremwigsenough to carry out the
biased competition. The extra top-down activity is $ratited together with the stimuli
to IPS, where competition or capacity enhancement s@siin the first hypothesis.
The idea for the visual filtering hypothesis is that @mions are strong enough
between the colour-networks for biased competitionltir fdistracting stimuli already
at visual level. If both dIPFC networks are turned arclpacity boosting, enhanced
activity in V4 should propagate to IPS and there cause fJaita increasing effect as
in the V4-bias hypothesis.

2.4 Modelling Protocol

To be make prediction regarding the results from thelfd¥periment, the model
needed to feature a similar protocol as in that expetisethat simulation and fMRI
data are comparable.

2.4.1Inputs

Stimulus dots where presented in a ring around a fixgioamt. Spatial locations for the
dots enter area V4 via earlier visual areas and are lgatelled by injecting external
current into excitatory neurones in V4. For a singlevdtt anglefs, the current
injected into a V4 neurone coding for angles 1(6) = 1o + 11 expfu(cos@; — 6s) — 1)),
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wherelp = 0.4 nA and; = 1.77 nA for pyramidal cells arld= 0.2 nA and; = 0.18 nA
for interneurones. For both cell typas: 39n/rad (this choice of gives a connectivity
profile very close to a Gaussian function with a cantsbaseline and with the same
width as V4-to-IPS connections). When two or more iiare visually presented, the
current to V4 neurones “is the sum of the currents spaeding to the two single
stimuli, normalized so that the maximal current i &i+ 1;. This normalization is
derived from the observation that the maximal respohsedirection-selective V1
neurone remains the same for either single motidraosparent motion stimuli
(Snowden et al. 1991)” (Compte et al. 2007).

The neural interaction that leads to the onset ofrepeesentation in dIPFC is so far
unknown and it would be beyond the scope of this study to anak@redictions
thereof. The two colour networks of dIPFC were turnetbypmjecting a current; =
0.058 nA into all excitatory neurones.

2.4.2 Simulations

Three different kinds of simulations were made iteotto test the rule encoding role of
the dIPFC; simulations with both dIPFC networks ofthvene dIPFC network on and
with both dIPFC networks on. The simulations included fof the five phases in the
fMRI protocol, but with shorter times. Fixation phase= 100 ms, instruction phase.
100 — 600 ms, during which currents were applied to dIPFC in gwmsgations that
required so. Cue phase: 600 — 1600 ms, during which currents weatedhinto the V4
network corresponding to two red and one yellow dot. 1600 —30delay phase.
There was no need for a response phase since the mohsb@red memories can easily
be read out at the end of the delay period (see figure 10).

The stability of the memory networks turned out to besisiea to the number of
neurones used in the simulation. If too few were usedpbataneous state behaved
unstably. To accommodate for this, the networks useddinae the hypotheses were
simulated with 4096 neurones in each colour-network ofAIRS, and 2048 in the
networks of dIPFC, 20480 neurones in total. However, theank used to produce
figure 11 only included 512. The reason for the unstable behawgithatithe IPS
network turned to high capacity by the dIPFC (figure 10ery close to the right
bifurcation point (figure 12). As the numbers of neuronésaseased the input to each
neurone is at the same level, but since it recehe@iput from more sources, the
variability is reduced. It is then possible for the netnto be closer to the unstable state
without being pushed over the limit by random fluctuatidrens to hundreds of
thousands of neurones is a more realistic number, bhtaslacge number of neurones
is impossible to simulate.

The code for the simulations was writterGsi+, and the equations where integrated
using a second-order Runge-Kutta algorithm with a time dtap©0.02 ms.
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3 Results
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Figure 10 - Example simulations of the WM task for the visual bias hypothesis. The
figures at the top correspond to what subjects where shown in the Kd&lraent.

Cells are aligned according to their preferred locations. Each dot reptesan action
potential. A) The no distraction task performed with a spontaneously @i#€C, only
two of three stimuli got stored. Reference simulation to compagtiees with. B) The
distraction task. The network successfully filtered the yalistractor when the red
dIPFC network was turned on. C) The network stored all thremusitin the no
distraction task when both colour networks of dIPFC were turned on.

Figure 10 shows example rastergrams for the V4-bias hypeihesccordance with the
experiment protocol. To recall, the assumption istiatdIPFC is responsible for
filtering as well as capacity support at high loads. Eostsider the reference network
figure 10.A which shows a no distraction task with a st#REC. During the first 100
ms all areas fire at spontaneous rates. No stiroulatas given to the dIPFC in the
instruction phase in this simulation and the spontaneadng iontinues. Stimulus
currents to V4 are turned on after 600 ms and drive actividd for 1 s, after which
they are turned off. A few hundred ms after the ortket]PS networks responds to the
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stimuli from V4 and two of the cues get encoded. Thikescapacity limit of the
network, and the third cue does only create a short aakl lesponse. In this example
one cues of each colour was encoded, but this diffens fime to time. The encoded
cues remain in IPS throughout the delay period. Thus, wiitie dIPFC activated, the
subject could only remember 2 stimuli, 1 red and 1 yellow.

The simulation presented in figure 10.B shows the disbratask. During the
instruction phase, the presentation of the instructiditt¢o leads to an input current
into the red network in the dIPFC that triggers pegsisactivity of the whole network,
whereas the yellow network remains at spontaneous Aiateity of the red dIPFC
causes a slight increase in activity in the red V4, wiidhrn leads to an increase in
the activity of the red IPS network and a slight desan the yellow IPS network.
When the visual cues enter V4, only the red cues are ahaotlee IPS. Successful
filtering has been accomplished.

Figure 10.C is again a no distraction task, but this tho#) dIPFC networks are
activated during the instruction phase. Persistent @dvatng in the dIPFC increases
firing rates in the other regions of the model. All cuasegeoded and remain
throughout the delay period. The signal from the dIPFQrweased the capacity in
IPS regardless of stimulus colour.

As shown by the example simulation, the dIPFC was @dlete attentional resources
to either filtering out distracters or increasing memopac#y by activating differently
depending on task demands.

3.1 Modulating capacity

As was shown above, the model is capable of dynamicedigasing the capacity of the
IPS network by activating the dIPFC. The increaseuicin dIPFC leads to increased
excitation and higher firing rate of IPS neurones, bigtrbot clear exactly how
increased firing rate results in higher capacity. Simulatiwere made with a single
local IPS network to see how they are linked. Figure 11o0%vshow capacity and rate
covary as the conductance of the external driving oéxegatory population, g.e is
varied. Increasing the excitation increases the firitg By so doing, it was possible to
regulate the network from a capacity of O up to 3, which tka maximal capacity
tested. Many parameters, several of which were mentiongne Methods section,
interact in setting the upper limit. The major limitifagetor is the gradual loss of
stability of the resting state which occurs at capactiearound 2.5. It should be noted
however that the risk of spontaneous bumps, and so il aapacity, to a certain
degree is a result of input current variability, which bargreatly reduced by increasing
the number of neurones in the simulation. A network witarger amount of neurones
will handle small deviations better and be more staidemally, however, it is not
feasible to run simulations with a physiological numbieneurones since they take too
much time.

Figure 11.B is included to show that the presented relatjpiesim also be found by
varying parameters within the IPS network that controfitirey rate. The curves in 8.B
were obtained by varying the leak potenti4l, of the excitatory population.

Having seen how capacity in the IPS can be regulatedrigyngathe degree of
excitatory input, it is easy to imagine how anotheadike the dIPFC (figure 11.C) can
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control the capacity of IPS by regulating the degreeoiaion of the IPS. This
situation was implemented in 8.D., where part of ther@al excitation to the IPS was
modelled as a flat connection from the dIPFC. Theraihea needs to have persistent
activity in order to maintain the raised capacity for lengmes. The connection from
the dIPFC to the IPS was tuned so that the memory arfairpsrat capacity 2 when the
other area is in resting state, but is raised to cgpaeithen it is turned on.
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Figure 11 - Capacity is increased by increasing the firing rate of the memagigmeA)
The network is sensitive to the external inputs to the excitppylation. Increasing
the conductance for the excitatory population increases firing rate (gisenand
hence the capacity (blue line). Increasing it too much will dessahilie resting state
by increasing the risk of spontaneous bumps (red line). B) This isffesttexclusively
found by varying the external input. Graph B shows similar curves obthynedrying
an internal excitation controlling parameter for the excitatory populatiba,l¢ak

2500

3000

20



potential. C) External excitation can be controlled dynamically by infpois another
area. D) The top panel shows the response of the IPS to three mémaiyvghen the
dIPFC is firing at a spontaneous rate. When the dIPFC is activatena the ilower
panel, all three stimuli can be stored. See figures 6 and 7 for an explawatsymbols.

3.2 Bifurcation

What does the extra excitation actually do? To undeddtandynamics behind the
behaviour of the memory network it helps to consultingardation graph like the
schematic figure 12. A bifurcation graph is used to descritbeahoon-linear network
changes state as a parameter is varied. In thistt@skifurcation graph is a type of
fl-curve describing the stable firing rate of neuronespa of the network as a
function of the input current it receives from outsilde network as well as other parts
of the network. When the input current is low, tharenly one stable firing rate, the
resting state firing rate. As the input current increatbessubnetwork can also enter the
memory state with the higher firing rate. Finally,emtthe input current is high, then
the resting state becomes unstable and only the mestadeyis stable. An example
helps to illustrate the graph further. Following the figuregraph 12.A, think of it as
the two capacity network of the upper panel in figure 11d3itP®n 1 in graph 12.A
corresponds to the resting state of the first few hunahiigeconds. When the
subnetwork forms a bump in response to a stimulus, theaised rate in these neurones
will reach that of position 2. As the neurones inllbenp increases their firing rate, the
inhibitory neurones respond by activating leading to otherames of the network
receiving increased inhibition, which means that they weilpbshed down to position 3.
A second stimulus would bring about a second bump. Thétnwgs can coexist, but
because of the inhibition they generate, both bumpswailé a firing rate as in 4 and
suppress the neurones not participating in a bump to #aérposition 5. Neurones in
position 5 that get stimulated by a third stimulus will hetable to form an extra bump
since the current will be too weak. The limit where rmrerbumps can be formed is a
bifurcation point and corresponds to the point where theadid line turns and
becomes dashed.

The next part of figure 12 corresponds to the bottom pahguré 11.D, where the
network of the pane above has been boosted to adipeeity network by an external
current (red arrow in figure 12.D). If the network stdutsher to the right in the
bifurcation graph, it is possible to fit another bumfpobe reaching the left bifurcation
point. One problem that has been mentioned beforatoftspontaneous bumps in the
resting state. This behaviour corresponds to the rightchifion point, beyond this

point the networks loses its stability. The conclussothat a given network can only be
boosted with the implemented method if it is not ayemned close to the right
bifurcation point.
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Figure 12 - Bifurcation graphs, example of a capacity two and a capacity three
network. A) The lower line represents those neurones that do natijpaitei in a bump
and the top line those that do. The network at rest is in positiomén\&bump is
formed, the neurones in the bump will be firing at a rate as in 2 aneshefthe
network will be in 3. When a second bump is formed, the firing ratehat one is
determined by location straight above 3. However, both bumps will adjashean
firing rate, 4. B) The red arrow shows how capacity in this ndtwan be increased by
an increase in the external excitation of the excitatory population.

3.2.1Capacity modulations in the hypotheses networks

Simulations of the IPS-filtering and the V4-bias hypothekesved that both
hypotheses can modulate capacity. Mean capacity is 1.9.&mdspectively when the
dIPFC is firing spontaneously. When both networks efdl?FC were triggered to
persistent activity, firing rates increased and mean dgpaas raised to 2.9. In the
IPS-filtering hypothesis, the dIPFC increases thedirate in the IPS directly, whereas
in the V4-bias hypothesis, the dIPFC increases the fidtegin V4 which in turn
increases the rate in the IPS.

3.3 Blocking distractions

Further simulations showed that filtering takes placene IPS for both the IPS-filtering
and the V4-bias hypotheses. This turned out to be an em@m@erty of the strong
inhibition between the two local networks in the IF8e strong inhibition was
originally needed to make sure that capacity was the segaedless of whether stimuli
were of a single or multiple colours, but here, @mme connections facilitate filtering. If
the firing rate in one of the colour-networks is ingehdue to external excitation, it
generates a net inhibition that suppresses the rate wothier network. Enough
inhibition can lower the rates below the left bifurcatpoint of figure 12, hence
shutting off bistability. For example, when the dIPBGniresting state, the firing rate of
the IPS in the V4-bias hypothesis is 0.02 Hz. When thEG énters filtering mode, the
rate of the favoured colour is increased to 0.19 Hz amattter network is suppressed
to silence.

3.4 Results for the hypotheses

Simulations of the IPS-filtering and the V4-bias hypothekesved that they can both
handle the capacity modulation as well as filteriradplg 1). In IPS-filtering, each
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colour-network in dIPFC connects directly to its corresjnag colour-network in the
IPS. Turning on one of the colour-networks in the dIRff€a causes the IPS to filter
stimuli of the other colour just as explained above. Wherwhole dIPFC is turned on,
capacity is increased for cues regardless of colour.

Instead of connecting directly to the IPS, the V4-bigsohiyesis proposes that the
dIPFC connects to V4. The increased firing rate in VAfdiltws from the top-down
signal from dIPFC propagates to IPS, which from V4 recetiie same inputs as the
IPS in the IPS-filtering hypothesis receives from V4 aliF@ together. The actual
mechanisms for capacity increase and filtering are hié@csame in the two hypotheses
and what differs is really the way the signal is traittwh

A finding of both the presented hypotheses was that whigrooe area of the dIPFC
was turned on, as in filtering mode, capacity was enhgnseds much for that
favoured colour. Implications of this finding for the modesd considered in the
discussion.

Table 1. Simulation results

Simulations IPS Rate, Hz Capacity
Network dIPFC  Filtering Boosting dIPFC off Boosting
off (red/yellow)
IPS-filtering 8 0.02 0.20/0.01 0.17 1.9 2.9
V4-bias 8 0.02 0.19/0.00 0.16 1.8 2.9

Table 1 -Simulation results for the two working hypotheses.

3.4.1The difficulties of building a V4-filtering network

V4-filtering is different from the other two hypothesA#hough dIPFC inputs target
V4 as in the V4-bias hypothesis, filtering occurs in V4eathan IPS. V4 is a visual
area and what needs to be filtered away is the bump extarnally driven stimulus.
The direct input of the stimulus in V4 is relativetyomg and so are the bumps that are
formed. Suppressing these bumps is not as easy as remuwvipgssibility for

bistability as in the case of IPS, where the firing iatjust pushed below the
bifurcation point. Compared with filtering in the IPS, thkibitory connections
between the colour-networks in V4 must be much strofinger they are in IPS when
IPS is doing the filtering.

Simulations showed that it is difficult to realise thgothesis as it has been defined.
The problem is that the inhibition needs to be reatlyng) between the colour-networks
in order to even make a noticeable difference in firatg@ when filtering. But with that
strong inhibition, it is difficult to increase activityhen both networks are turned on for
the boosting mode, which causes IPS to receive tooditéation to increase capacity
significantly. Adding a connection from dIPFC to IPS colé a way of overcoming
this problem. Solving the problem of low rates, when lsotbur-networks are turned
on, with direct connection from dIPFC to IPS posegew difficulty though. Filtering in
V4 will, as mentioned above, bring one of the colour-oeks down and the other up.
When the increased activity of the favoured colour erden$S that also receives
inputs from the dIPFC, the activity easily adds up to begulisker the right bifurcation
point and the network loses stability. It would be too ¢asay these results prove that
V4-filtering is impossible to model in this way, but ietBolution is there to be found, it
involves times consuming fine-tuning. Attempts were made tthge¢, but the time
was too short to solve the problems that mounted.
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3.5 Predictions for fMRI comparison

The two working hypotheses, IPS-filtering and V4-bias catoldeapart with fMRI. In
order for this to be possible, predicted fMRI activity fao hypotheses are here
presented as simulated data translated into blood oxyge et dependent (BOLD)
signal, the kind of data generated by fMRI (figure 13). Byeut of figure 13
corresponds to figure 10. The dIPFC is not turned on initleélaions of the left
column, which is thought to correspond to instructionsafao distraction task
conducted with low-capacity subjects. It could also beuntbns for an easy no
distraction task with a high capacity subject. Onevaék of the dIPFC is turned on in
the middle column, corresponding to filtering for a WyMC subject. Both networks
are turned on in the right column, corresponding tanthdistraction task, also for high
capacity subjects.

a No distraction b Distraction c No distraction
dIPFC off dIPFC on
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Figure 13 - Predictions for BOLD-responses. Blue lines correspond to the V4-bias
hypothesis and red dashed lines to IPS-filtering. Thin lines show populatioitysas
the summed synaptic currents. Thick lines are the BOLD-respohsgmpulation
activity convolved with the homodynamic response function showed in thé\jnse
distraction task, dIPFC only firing at spontaneous level. B) Distoactask simulated
with one dIPFC area tuned on. C) No distraction task where both areaRieCdlere
turned on. The BOLD-response in V4 is differs in the two hypothesesamitrary
units.

The only area where the hypotheses differed in activdty V4. Thus, what should be

looked for in an fMRI experiment is whether the actiafyv4 is stable over different
task settings or whether it covaries with the agtigitthe dIPFC. A stable behaviour is
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an indication for the IPS-filtering hypothesis, whergaseasing activity in V4 is an
indication for the V4-bias hypothesis.

4 Discussion

In this study, we sought to investigate two main questibng.primary question was
whether activity in the dIPFC could explain the linkvbe¢n WMC and distractibility.
Secondarily, we investigated how the dIPFC connectsetpahietal and occipital areas
presumably responsible for memory storage and filterfrdistracters. The results
show that if the part of dIPFC responsible for one wois turned on, the model stores
only stimuli of that colour and filter distractors. @e other hand, if both areas are
turned on, the capacity of the whole memory areacieased regardless of stimulus
colour. In this way, the dIPFC serves as the link bebaMC and distractibility. With
a low functioning dIPFC, capacity remains at a low lewel distractors are stored just
as easily as task relevant cues. A high functioning dIRFb@other hand, can enhance
the WMC and also make sure that distractors are efédgtiiltered. Capacity is
enhanced by increased excitation to the whole memory amddiltering is achieved by
biased competition when only favoured attributes of thenong area are targeted by
the top-down signal.

Successful simulations were made for the IPS-filteaind the visual bias hypotheses.
That is, the top-down signal can target either adtdge of the visual cortex or the
memory area directly. In both cases, the filteringblagsed competition happens in the
IPS. The different hypotheses predict different BOLDpo#ses, and support for either
can hence be sought for in fMRI data from an experimasinig a similar protocol. As
has been mentioned, such an experiment is being condwttddth is not yet
available.

| never succeeded in creating a V4-filtering network, and thielggms with filtering in
the visual area might be explained by the results ofricag Ungerleider (2001), that
spatial filtering in visual areas is relatively locabdaa matter of a percentage change,
whereas it has been found that filtering in later negjican be total. “In prefrontal
cortex, filtering of ignored locations is strong, eatyd spatially global” (Everling et al.
2002). The reason why it is relatively easy to causeahftldering in later areas is
probably because these are bistable memory areas. mHm@arity of a bistable area
implies that when it is inhibited below the left bifation point (figure 12), it will lose
all its capacity to hold memories. The area can hbacshut off by a relatively small
change in activity. The absence of non-linearitiesateuplain the difficulties of
filtering effectively in the visual areas. All activithiat needs to be reduced needs to be
so actively. This requires very strong inhibition and makediltering like a balance
scale, when one is pushed down the other goes up.

The results in this study reproduce the results of Vagal €2005), who used event-
related potentials to show that subjects with high Wit€rfstimuli more efficiently
than those with low WMC. We hypothesize that the @R subjects in that study was
in capacity-enhancing mode (figure 10.C) when their WMC mvaasured, and that the
dIPFC was in filtering mode (figure 10.B) when their distibility was measured.
Thus, the strength of dIPFC activity explains the figdi by Vogel et al. (2005) that
persons with low WMC cannot filter distractions wiplersons with high WMC can.
The way in which the dIPFC was modelled to maintaifecgit goal relevant rule
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representations depending on the task goes hand in hanth&gtrong link between
dIPFC and intelligence (Conway 2003, Kane & Engle 2002). TRECIhas
connections to many brain regions and its importancetédigence seem to stem from
allocation of its resources in accordance with dynallyichangeable representations,
which is exactly the abilities feature by the dIPF@he present model (Engle et al.
1999, Miller & Cohen, 2001). The rule encoding representatieftsin this task were
only based on colours, but it is thought that there areymdanensions by which rules
can be integrated and mapped, and as they become moriexoting dIPFC activation
seem to increase (Kruger et al. 2002). The common dependkdiB3FC activity that
has here been observed for WMC and filtering accordinglées could provide a
framework for understanding intelligence.

Even if a main result is that dIPFC activity can expM/MC, it should be noted that it
is not implied that it explains all variations in WMI.figure 11 it was shown that the
same dependency for capacity could be achieved by comgrptirameters within the
IPS. But it is not clear if the internal capacityeatetining properties can be modulated
dynamically the way dIPFC can modulate external inptat iPS. It is also hard to see
how internal properties could explain the link betwegracday and WMC.
Nevertheless, it is worth making the point that samerpersonal variation in WMC
can be due to differences in the IPS.

The internal and external contributions to WMC plagle also for ADHD. It has
previously been found that visuospatial WMC is a sensitigasure of the severity of
the ADHD (Westerberg et al. 2004). Following the reasoftmg above, this
correlation is most likely driven by the part of the \@Nhat rely on the activity in
dIPFC. We argue that it is the attention part of tHd ¥Whd not the actual storage
capacity in the IPS that constitutes the link betwedhGAand ADHD. In order to get
even more reliable and better explaining measures of AliH®therefore important to
develop methods to asses WMC in a way that distinguishe®be the storage
capacity of the IPS and the influence of dIPFC. One sussilgibty would be a test
battery with subtasks that are likely to activatedd~C to different degrees.

4.1 Limitations of the model

The individual networks of the model is of the same typbeen used in previous
studies with this model that have generated interestingestabte findings and
predictions, but it experimental studies need to conduntedder to verify the
assumptions of the model. However, the connectiotiseofull network used here are
obviously very tentative. The assumption that visualgt enter via V4 is maybe the
most striking, since it has been observed that spaftamation often enters the
parietal areas through the dorsal pathway. Neverthélessinclear if it would have
been necessary to build the model in a significantfeint way if other areas were to
constitute the main entry point of visual informatiatoithe IPS. There are studies
showing that rules might be maintained in the parietgkg, This could mean that
there are other areas that interact with those nextiektre that need to be incorporated
into the model to really understand what is happening.dardo be a manageable
project, what has been modelled is probably not thesffatly of the connections
between WMC and distractibility, but part of an explaonat
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Interactions between the areas have solely beennmepked as excitatory-to-excitatory
connections. Inhibitory interactions could make filtgrmore easily explained, but it
would on the other hand make it more difficult to proplogeotheses in line with the
increased excitation in IPS needed for capacity enhandemen

4.1.10ther hypotheses

Except for the restriction to only model top-down sigaekxcitatory connection,
further restrictions were made that reduced the numberpofthgses to three. Whereas
all three hypotheses were based on a dIPFC that conaebts excitatory cells of either
the visual area or the memory area, it is plauskdethe reality is more of a mix of all
the hypotheses, but the priority was to set up hypothaf$eredt enough to be
meaningfully tested against each other. Since the modedisudts are supposed to later
be compared with fMRI data, the hypotheses were chosgmvay that they were
thought to generate different BOLD activity in differdmtiin regions, so that the
hypotheses can be told apart.

An important component left out of the model is neuronfetdus, in particular
dopamine, which in monkey studies has been shown toamgéect on WM
performance (Sawahuchi & Goldman-Rakic 1994) as wellRE@Ilactivity (Williams
1995). Interestingly, the dopamine system is a major tafgee ADHD drug, Ritalina,
which decreases distractibility. It might be that télationship between dopamine on
the one hand and WMC and distractibility on the otheaissed by its influence on the
activity of dIPFC, as suggested by this study. It might bésthat other aspects of the
dopamine system are important for this relationship. Loo&irtge bifurcation graph in
figure 12 for example, it is possible to think of other wdngt other areas could affect
the performance of the WM system. Changes in the lsplaveen the bifurcation points,
or modulation of the width of the connection-curve (Dewstz & Seamans 2002) are
possible ways by which dopamine might regulate WMC. Alsecant study has shown
that dopamine signals to the basal ganglia and prefragmins can block distractors
by “locking the gates to WM” in a task where distractwese presented during the
delay phase (Gruber et al. 2006). Although separate, thesactions of dopamine
could provide another explanation for the link between WaW@ distractibility.

4.2 Suggestions for future studies

The assumption when the modelling started was that teukl be a trade-off between
filtering and capacity at high memory loads (deFockeal.e2001). In other words,
when attentional resources are devoted to filtering sttaditers, the capacity would be
lower than when they are used to boost capacity. Howeweresults show that
capacity for the favoured colour in filtering mode is siaene as the total capacity in
capacity enhancing mode. It is unclear if this is aggalsituation or not. As it is now,
it does not cause any disagreement with the findingoggVet al (2005). But that
study was only carried out for one level of difficulitywould be interesting to see the
same study conducted for higher loads as well. The malliéloddls if it would turn out
that high capacity subjects maintain their filtering &g when the WM load
approaches their WMC. But if it turns out that the suljstore distractors at high
loads, the model would somewhat faulty because thefiitdreng signal should not
increase capacity as well. If our original assumptioeseveorrect, then filtering or
boosting becomes a choice of strategy in the facdend@ed attentional resources:
remember only the relevant stimuli but not all, or rerber as many stimuli as
possible, but with the risk of including distractors. ltulebbe interesting to test

27



whether such a choice of strategy actually takes plase, more or less efficient
choices of strategy could be a further difference betweople with good and bad
WMC, intelligence and resistance to distraction.

It has been seen in this study, that in order foiRi&to benefit from top-down
signaling from the dIPFC, it needs to be in an actistite where the extra excitation
does not push the activity above the right bifurcationtp@igure 12), which would
cause spontaneous bumps. This imposes causes a restnictiow large the effect of
the dIPFC on the memory area can be. As the dIPE€nsd on during the instruction
cue, it directly starts to excite the resting IPS viithpower. It would be interesting to
investigate the possibility that the dIPFC is turned on gridigafulfil a demand from
IPS. From the resting state, the activation by theunsbn cue could turn it in a low
persistent activity state. When cues enter the IRS®tra activity here could via a
bottom-up connection to dIPFC push this area to a higheateoh level, which in turn
is fed back to the IPS. Done this way, the dIPFC couldtiaiai an optimal spontaneous
firing rate in IPS even as the WM load increases aadapacity limit could exceed
that set by the right bifurcation point.

5 Conclusions

This study has shown, by computational modelling, thatemt®ding activity in the
dIPFC could explain the link between WMC and distractipilit has been found that
dIPFC can target either the memory area IPS or twealvarea V4. Using the predicted
fMRI activity, the hypotheses presented in this studytbematested by an fMRI
experiment.
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APPENDIX A

This appendix specifies all values used in the simulatibims equations have been
presented in the Methods section, but are here shoumtagaake the tables easier to
read.

av
mEIIAMPAR'*'INMDAR +1caga,r +g,(V-E)), V<V, Q)
V =Vieeen V=V,
I syn = gsyns(\/ _Vsyn) (2) gSyn,ij :W(HI — Hj )Gsyn (3)

All parameters of the integrate-and-fire equation (&)sgrecified below. It should be
noted that there is also refractory periggwhich sets the time the potential is held at
the reset potential after an action potential. In (@) @),synis AMPAR, GABAxR or
NMDAR. gsyn,jis the conductance between neurone i and neurone j)démends on
the difference in preferred cue, setWgs; — 6,).

360
1

WG -6)=3"+Q =)@ @) o [WE-6)d6 =1 (5)
0

For unstructured connections, where all neuronasaxs equally strong to each other
W(8; — 6,)=1. Structured connections are determined byn@malized as in (5). The
normalization imposes a functional relationshipa®sn the parameters, thus only J
andoc needs to be specified.

AMPAR and GABA\R synaptic gating variables, s, are modelled asstantaneous
jump of magnitude 1 when a spike occurs in theyprastic neurone followed by an
exponential decay with time constagis. The NMDA conductance is voltage
dependent, witlgs,, multiplied by ¥(1 + [Mg*] exp(0.062V,,)/3.57), Mg*] = 1.0
mM. The channel kinetics is modelled with (6) aiy (

3—? - {Tj“ ax1-s)  (6) ‘;—f = —(,—jx +20t-t) (@
Excitatory cdls Inhibitory cells

Cr, NF 0.5 Cr.NF 0.2

gL nS 25 gL nsS 2

E.mV -70 E.mV -70

ViesmV -60 Vies MV -60

Vin, MV -50 Vi MV -50

Tret, MS 2 Tret, MS 1

Ts_AmpA, MS 2 Ts cABAr MS 10

s _ampa, KHz 1 s casa KHz 1
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Ts_NMDA, MS 100 Oext, KHz

s nmpa, KHzZ 0.5 T gxe MS

Tx_NMDA, MS 2 rate,, kHz 1.8
0x nmpa, KHZ 1

Oex, KHZ 1

T Exy MS 2

rate,, kHz 1.8

Table A -Parameter values used for all cells in the model. The total capaeit@antg
the total leak conductance,ghe leak reversal potential Ethe threshold potentialg/
the reset potential \; and the refractory timees . 75 is the exponential decay tinmes
controls the saturation properties of synaptic curregtgontrols the rise time of
NMDAR channels. Both excitatory and inhibitory cells receiveeat@xcitation
mediated by AMPAR at a rate of rateext.

Network

Area

Figure A -Schematic layout of the model. In each time step, each cellesceput
currents summed from all cells in the network, the other n&tinaihe area and
networks in other areas. All connections are specified for thedfféypotheses in the
tables below.

IPS \Z dIPFC
IPS-filtering & All

Hypotheses All hypotheses V4-bias V4-filtering hypotheses
Neuronal connections within the
network
Ge,e_avpa, NS 0.03515 0.00475 0.00475 0
GEeEfNMDA, nS 0.6429 0.1225 0.1225 0.983
GEgLAMPAy nS 0 0.00475 0.00475 0
GEeL NMDA, nS 0.6336 0.19 0.19 0.74
GQE, nS 0.863 0.323 0.323 0.937
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Gi,, NS 0.6857 0.08265 0.08265 0.725
oe e, deg 9.4 10.1 10.1 -
oe,, deg 32.4 32.4 32.4 -
o1, deg 32.4 32.4 32.4 -
o, deg - - - -
i 4.1 5.15 5.15 1.5
e 1.5 1.58 1.58 1.5
JﬂeE 15 1.5 1.5 1.5
JF|9| 15 1.5 1.5 1.5
Neuronal connections between networks in an area
Ge_e2_awpa NS 0.00285 0.00025 0.00025 0
GE9E27NMDA, nS 0.0521 0.0065 0.0065 0
GE9|27 AMPA, nS 0 0.00025 0.00025 0
GE9|27 NMDA, nS 0.0514 0.01 0.18 0
Gez,e_ awpa NS 0.00285 0.00025 0.00025 0
GEZ»Ef NMDA, nS 0.0521 0.0065 0.0065 0
GEZeL AMPA, nS 0 0.00025 0.00025 0
GEZeL NMDA, nS 0.0514 0.01 0.18 0
Gi,e2,nS 0.1399 0.017 0.017 0
Gi,r, NS 0.0556 0.00435 0.00435 0
G2, NS 0.1399 0.017 0.017 0
Gz, NS 0.0556 0.00435 0.00435 0
oee2, deg 9.4 14.4 14.4 0
OEl2, deg 32.4 - - 0
oez,e, deg 9.4 14.4 14.4 0
OE2,), deg 324 - - -
OlE2, deg 324 - - -
Oi12, deg - - - -
Oz 4E, deg 324 - - -
o, deg - - - -
e e 4.1 5.0 5.0 0
e 1.5 1.58 1.58 0
. 4.1 5.0 5.0 0
e 1.5 1.58 1.58 0
L2 1.5 1.5 1.5 0
L 1.5 1.5 1.5 0
oy 1.5 1.5 1.5 0
o 1.5 1.5 1.5 0
External input
Ge_ExTERNAL 0.00186 0.015 0.015 0.003
G\ exTERNAL 0.001725 0.045 0.026 0.00238

Table B -Table for neuronal connections in the model. E referrers to the eowitat
population and I the inhibitory, BE is connections from excitatory neurones to other
excitatory neurones, Il is excitatory to inhibitory neurones, etc. In the sections of
connections between the networks in an are2ER2 should be read as the excitatory
neurones in one of the networks to the excitatory neurones in the otierlkieA dash
instead of sigma value indicates unstructured connection. Some figuredtser inr
bold to highlight the differences between the hypotheses.
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IPS-filtering V4-bias VA4-filtering

Neuronal connections between areas

Gv,p NS 0.088 0.088 0.088
Gp,p,nS 0.0115 - -
Gp,v,NS - 0.13 0.07
ov_p, deg 11.2 11.2 11.2
OD_Ps deg - - -

ob,v, deg - - -

J+V9p 5.2 5.2 5.2
J+D9p 0.79 - -
J*Dev - 0.79 0.79

Table C - Connections between areas are all excitatory-to-excitatory AMRAateel.
V =V4, P =IPS, D = dIPFC. A dash indicates that the areas ar®unmected.
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